امروز چهارشنبه , 30 آبان 1403

پاسخگویی شبانه روز (حتی ایام تعطیل)

7,000 تومان
  • فروشنده : کاربر
  • مشاهده فروشگاه

  • کد فایل : 45009
  • فرمت فایل دانلودی : .doc
  • تعداد مشاهده : 7.2k

دانلود تحقیق درمورد مثلث هاي رلو

دانلود تحقیق درمورد مثلث هاي رلو

0 7.2k
لینک کوتاه https://pdf-doc.ir/p/11ee71d |
دانلود تحقیق درمورد مثلث هاي رلو

با دانلود تحقیق در مورد مثلث هاي رلو در خدمت شما عزیزان هستیم.این تحقیق مثلث هاي رلو را با فرمت word و قابل ویرایش و با قیمت بسیار مناسب برای شما قرار دادیم.جهت دانلود تحقیق مثلث هاي رلو ادامه مطالب را بخوانید.

نام فایل:تحقیق در مورد مثلث هاي رلو

فرمت فایل:word و قابل ویرایش

تعداد صفحات فایل:16 صفحه

قسمتی از فایل:

براي جابجا كردن يك جسم از چهار چرخه استفاده مي كنيم ولي اگر جسم سنگين باشد ممكنست محور چرخها در اثر سنگيني جسم كج شده و يا بشكند. همانطور كه اغلب ديده ايم براي حركت دادن چنين اجسامي سنگيني بهتر است چند غلتك استوانه اي شكل (مثل لوله يا ميله گرد قطور) را به موازات يكديگر روي زمين قرار دهيم ، سپس يك صفحه محكم مسطح روي آنها بگذاريم و بعد جسم سنگين را روي اين صفحه منتقل نمائيم ، با هل دادن اين دستگاه ، صفحه با بارش روي استوانه ها غلتيده و به جلو خواهد رفت . ضمن حركت بايد هر يكاز استوانه ها را كه به ترتيب از عقب دستگاه خارج مي شوند برداشته و مجداَ در جلو صفحه روي زمين قرار دهيم .

 

 

 

اگر زميني كه دستگاه روي آن حركت مي كند مسطح باشد ، جسم بدون تكان و به محاذات خود خواهد رفت .

علت حركت بدون تكان جسم اينست كه مقطع استوانه اي چرخنده دايره است و دايره نيز به اصطلاح رياضيدانان يك منحني مسدود متساوي العرض مي باشد كه در نتيجه فاصله بين صفحه زير جسم و زمين هميشه ثابت
مي ماند .

اگر يك منحني مسدود محدب رابين دو خط موازي محاط مي كنيم به

طوريكه دو خط با دو سمت متقابل منحني تماس حاصل مي كنند ، فاصله بين دو خط موازي را عرض منحني در جهت مفروض نامند .

طبق تعريف بالا يك بيضي داراي عرضهاي مختلف در جهات مختلف مي باشد و بر خلاف دايره ، متساوي العرض نيست .

حال اگر جسمي را روي تعدادي استوانه هاي بيضي القاعده قرار دهيم مسلماً به طور افقي حركت نخواهد كرد و دايماً بالا و پايين خواهد جهيد ، در حاليكه حركت هموار همين جسم روي استوانه هاي با قاعده دايره بدين دليل است كه دايره داراي عرضهاي مساوي در جهات مختلف مي باشد و مي توان آنرا بين دو خط موازي (يا دوصفحه موازي) چرخاند بدون اينكه لازم باشد

فاصله بين خطوط (و يا صفحات) را تغيير دهيم .

غالباً تصور مي شود كهدايره تنها شكل هندسي است كه در كليه جهات متساوي العرض مي باشد ، در حاليكه تعداد چنين منحني هايي نامحدود بوده و هر يك از آنها مي توانند به عنوان مقطعي از غلتكهاي زير جسم به كار روند و جسم را با نرمي و همواري به جلو رانند . اين خود نمونه مثال كاملي است كه نشان مي دهد چگونه ممكنست تصورات ظاهري يك رياضيدان باعث گمراهي و انحراف او گردد .

عدم اطلاع و شناخت چنين منحني هايي نتايج اسف انگيزي در صنعت به بار مي آورد ، بطور نمونه ممكنست در موقع ساختن يك زيربناي دريايي مدور ، فقط قطر مقاطع‌آنرا در جهات مختلف اندازه گرفته و كنترل كنيم . در حاليكه به سهولت مشاهده مي شود بدنه چنين زيردريايي داراي ناهمواري هاي زيادي خواهد بود و هر چه با كنترل اقطار آن بخواهيم ناهمواريها را برطرف كنيم موفق نمي شويم .